

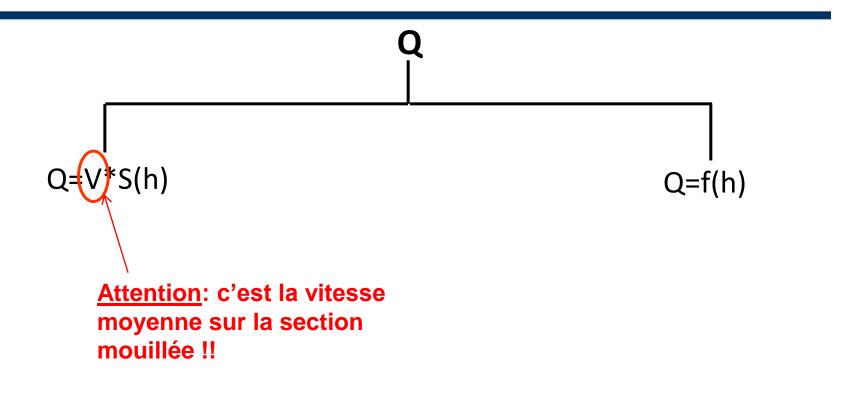






## Techniques d'évaluation de débit en réseau

Sandra Isel, Docteur-Ingénieure, 3D EAU Matthieu Dufresne, Maître de Conférence, ENGEES / 3D EAU


### **DEBITMETRIE**

Introduction

La mesure & limites

Mise en place et analyse

Conclusion



### **TECHNOLOGIES EXISTANTES**

(POUR LA MESURE DE V<sub>MOY</sub>)

Introduction

La mesure & limites

Mise en place et analyse

Conclusion

<u>Légende:</u>

|                    | V - Courantométrie                                                                                                                      |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| En charge          | ✓ Electromagnétique                                                                                                                     |  |  |  |
| A surface<br>libre | <ul> <li>✓ Temps de transit</li> <li>✓ Doppler continu</li> <li>✓ A corrélation</li> <li>d'échos</li> <li>✓ Radar de surface</li> </ul> |  |  |  |

Instrumentation des réseaux – Journée ARSATESE Loire-Bretagne 2/12/2015

— Intrusif

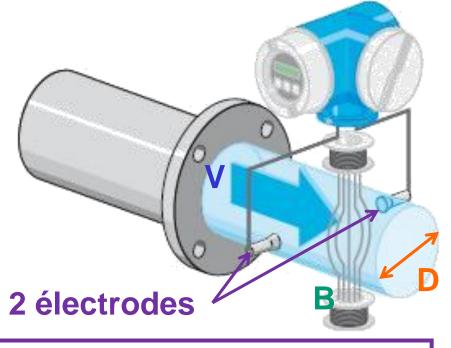
— Sans contact avec le flux

### COURANTOMETRIE (ELECTROMAGNÉTIQUE)

1/2

Introduction

La mesure & limites


Mise en place et analyse

Conclusion

### > Electromagnétique



Typiquement placé après une pompe, dans un siphon



#### Principe physique: Principe de Faraday

Un liquide conducteur animé d'une vitesse V s'écoulant perpendiculairement à un champs magnétique B induit une tension électrique. Cette tension, mesurée par 2 électrodes, est uniquement dépendante de D, B et V.

### COURANTOMETRIE (ELECTROMAGNÉTIQUE) 2/2

Introduction

La mesure & limites

Mise en place et analyse

Conclusion

#### Avantages / Inconvénients



- + Non-intrusif → aucune perte de charge
- + Large gamme de diamètre possible
- + Insensible à la corrosivité, viscosité, densité du fluide
- + Maintenance réduite sur site (nettoyage nul, et étalonnage rare)
- Utilisable uniquement pour les liquides conducteurs
- Mise en place nécessite du génie civil
- Mesure en charge uniquement



Débitmètre électromagnétique Proline Promag H200 (ENDRESS-HAUSER)

### **TECHNOLOGIES EXISTANTES**

Introduction

La mesure & limites

Mise en place et analyse

Conclusion

<u>Légende:</u>

|                    | V - Courantométrie  |  |  |  |
|--------------------|---------------------|--|--|--|
| En charge          | ✓ Electromagnétique |  |  |  |
|                    | ✓ Temps de transit  |  |  |  |
| A surface<br>libre | ✓ Doppler continu   |  |  |  |
|                    | ✓ A corrélation     |  |  |  |
|                    | d'échos             |  |  |  |
|                    | ✓ Radar de surface  |  |  |  |

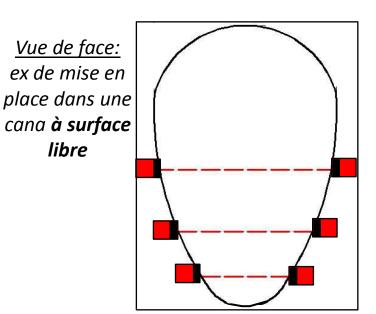
Instrumentation des réseaux – Journée ARSATESE Loire-Bretagne 2/12/2015

— Intrusif

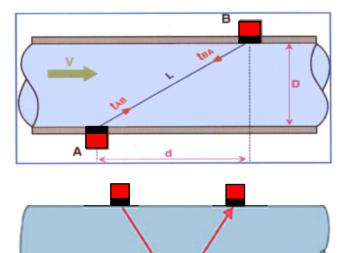
— Sans contact avec le flux

### COURANTOMETRIE (CORDES DE VITESSE)

1/2


Introduction

La mesure & limites


Mise en place et analyse

Conclusion

#### > Temps de transit



Vue de profil: ex d'installation dans une cana **en charge** 



#### **Principe physique:** Corrélation entre:

- Le temps mis par l'onde ultrasonore pour traverser la canalisation (2 émetteurs-récepteurs de part en part de la section)
- et la vitesse d'écoulement du fluide

### COURANTOMETRIE (CORDES DE VITESSE)

2/2

Introduction

La mesure & limites

Mise en place et analyse

Conclusion

#### Avantages / Inconvénients

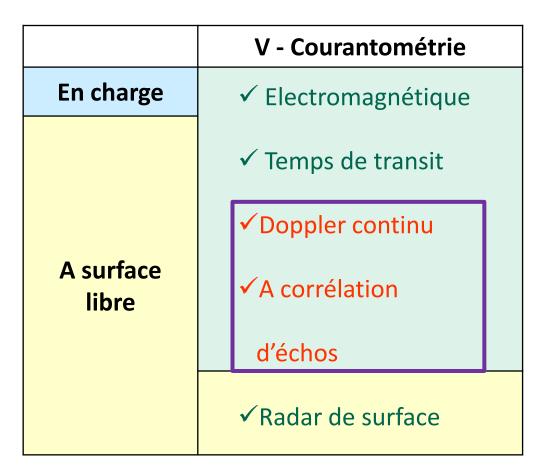


- + Mesure possible pendant une mise en charge
- + Bonne précision et plage de mesure
- + Mesure indépendante de la présence de particules
- + Peu intrusive pas de perte de charge, maintenance réduite
- Sensibilité aux gradients de T° sur la corde de mesure et à la présence de bulles
- Installation nécessite généralement du génie civil
- Vitesse moyenne sur chaque corde
- Attention au soin apporté à l'installation des capteurs (le récepteur doit se situer dans le cône d'émission de l'émetteur)



<u>Ex</u> de capteur à temps de transit Greyline TTFM 1.0

### **TECHNOLOGIES EXISTANTES**


Introduction

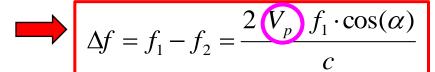
La mesure & limites

Mise en place et analyse

Conclusion

Légende:




Instrumentation des réseaux – Journée ARSATESE Loire-Bretagne 2/12/2015

Intrusif

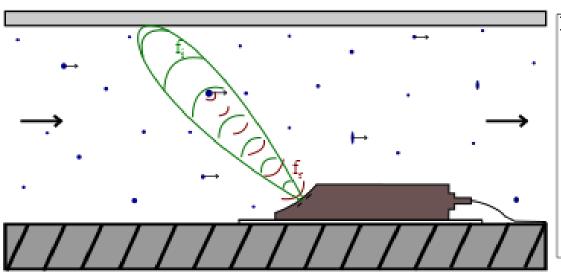
— Sans contact avec le flux

Introduction

**Effet Doppler continu** 



La mesure & limites


**Principe physique:** Corrélation entre:

-Variation de fréquence (f<sub>i</sub> onde émise, f<sub>r</sub> onde réfléchie sur les particules ou les bulles d'air)

- et la vitesse d'écoulement du fluide

Mise en place et analyse

Conclusion



Légende

• • particules de différentes tailles

Hyp: V<sub>particules</sub> = V<sub>écoulement</sub>

cône de mesure.

sens de l'éconlement.

→ sens de déplacement des particules

ondes émises par le capteur fa C Doppler à la fréquence fa

ondes réfléchies par la particule

à la fréquence f<sub>r</sub>

Introduction

La mesure & limites

> Mise en place et analyse

Conclusion

Avantages / Inconvénients de la mesure de vitesse par Doppler continu



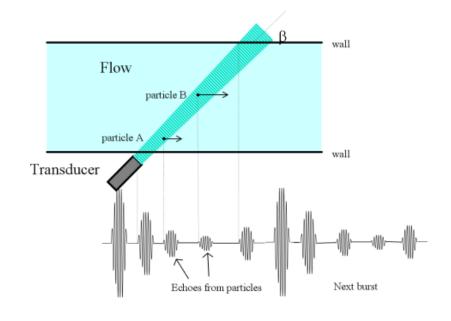
- + Mesure possible pendant une mise en charge
- + Mise en place « facile »
- + Pas de limitations en vitesse maximale.
- + Peu de problèmes d'écho de surface ou de paroi
- + Peu sensible aux composantes verticales de vitesse et au positionnement
- -Intrusif sensible au dépôt (donc aux faibles V) entretien régulier
- Où mesure t'on la vitesse?
- -Lien entre V<sub>mesurée</sub> et V<sub>moyenne</sub> sur l'ensemble de la section? -Non connaissance du profil de vitesse et des fluctuations
- Peu précis aux faibles vitesses.
- ■Attention : risque de dérive difficile à identifier
- Attention à la charge de l'écoulement (si trop: encrassement | si pas assez : pb de réflexion sur les particules)

Introduction

La mesure & limites

Mise en place et analyse

**Conclusion** 


#### Profilomètre

#### **Principe physique:**

Perfectionnement du Doppler continu avec possibilité de déterminer l'emplacement des points de mesure.

#### Deux méthodes d'utilisation:

- Manière cohérente (variation de phase de l'onde transmise entre 2 émissions)
- Manière non-cohérente (utilisation de la largeur du pulse pour déterminer le décalage temporel)



Introduction

La mesure & limites

> Mise en place et analyse

Conclusion

Avantages / Inconvénients de la mesure de vitesse par Doppler pulsé



- + Mesure possible pendant une mise en charge
- + Mise en place « facile »
- + Précise aux faibles vitesses
- + Connaissance du profil de vitesse et des fluctuations
- Intrusif → sensible au dépôt (donc aux faibles V) → entretien régulier
- -Lien entre V<sub>mesurée</sub> et V<sub>moyenne</sub> sur l'ensemble de la section? Limitation en vitesse max mesurable à hauteur donnée.
- Zones mortes en raison des échos de fond et surface
- Très sensibles aux composantes verticales de vitesse et à l'installation
- Attention : risque de dérive difficile à identifier
- Attention à la charge de l'écoulement (si trop: encrassement | si pas assez : pb de réflexion sur les particules)

### **TECHNOLOGIES EXISTANTES**

Introduction

La mesure & limites

Mise en place et analyse

Conclusion

<u>Légende:</u>

|                    | V - Courantométrie  |  |  |  |
|--------------------|---------------------|--|--|--|
| En charge          | ✓ Electromagnétique |  |  |  |
| A surface<br>libre | ✓ Temps de transit  |  |  |  |
|                    | ✓ Doppler continu   |  |  |  |
|                    | ✓A corrélation      |  |  |  |
|                    | d'échos             |  |  |  |
|                    | ✓ Radar de surface  |  |  |  |

Instrumentation des réseaux – Journée ARSATESE Loire-Bretagne 2/12/2015

— Intrusif

— Sans contact avec le flux

### COURANTOMETRIE (RADAR)

1/2

Introduction

La mesure & limites

Mise en place et analyse

**Conclusion** 

Radar de surface

#### **Principe physique:** Corrélation entre:

- Vitesse de la surface libre (vitesse des ondes de surface)
- et la vitesse d'écoulement du fluide



**Hyp:** V<sub>écoulement</sub> = V<sub>ondes\_surface</sub>

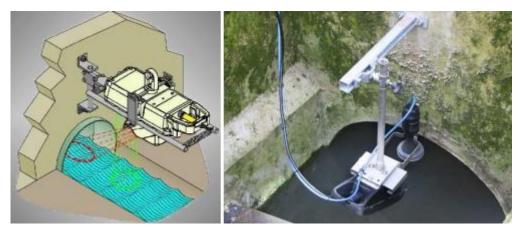



Illustration du FLO-DAR par Hach (gauche) et Raven-Eye par Flox-Tronic (à droite) (source COMETEC)

### COURANTOMETRIE (RADAR)

Introduction

La mesure & limites

> Mise en place et analyse

Conclusion

Avantages / Inconvénients de la mesure de vitesse par radar de surface



- + Non intrusif => entretien réduit
- + Valable en forte vitesse
- Mesure impossible en mise en charge
- -Lien entre V<sub>mesurée</sub> et V<sub>moyenne</sub> sur l'ensemble de la section? -Problème pour les vitesses faibles (et en particulier pour le régime fluvial pour lequel les ondes de surface n'évoluent pas à la même vitesse que l'écoulement)
- Attention : risque de dérive difficile à identifier

Introduction

La mesure & limites

> Mise en place et analyse

Conclusion

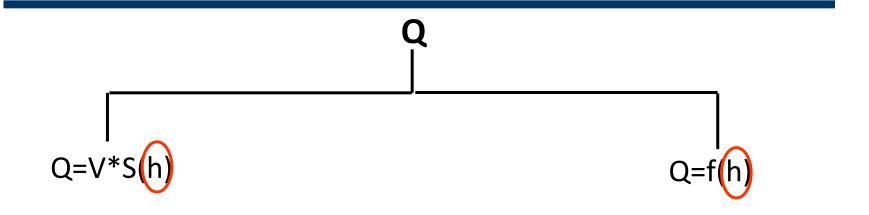
### COURANTOMETRIE

#### > Comparaison des technologies de mesure de vitesse

|           | Caractéristiques      |                                                          |                                                    |                          |              |                                                  |                                     |                                                   |                                                         |
|-----------|-----------------------|----------------------------------------------------------|----------------------------------------------------|--------------------------|--------------|--------------------------------------------------|-------------------------------------|---------------------------------------------------|---------------------------------------------------------|
|           | Principe de<br>mesure | Précision                                                | Installation                                       | Entretien<br>requis      | Dérives      | Sensibilité à<br>l'environnement                 | Fonctionnement<br>en charge         | Coût<br>d'investis-<br>sement                     | Incertitudes<br>associées                               |
| INTRUSIVE | Doppler               | Difficile à<br>évaluer                                   | Installation<br>et<br>étalonnage à                 | Important<br>(≈ 1 fois / | Difficiles a | Importante<br>(capteur intrusif)                 | Oui                                 | Moyen                                             | Difficiles à<br>évaluer                                 |
| ≥         | Profilomètre          | Bonne                                                    | soigner                                            | mois)                    |              |                                                  |                                     |                                                   |                                                         |
| HORS EAU  | Radar                 | Bonne                                                    | Installation<br>facile,<br>étalonnage à<br>soigner | Faible                   | Faible       | Oui (si<br>perturbation de la<br>surface libre)  | Non (zone morte<br>sous le capteur) | Important                                         | Difficiles à<br>évaluer                                 |
|           | Temps de<br>transit   | Très bonne<br>(si le nombre<br>de cordes est<br>adéquat) | Installation<br>difficile (génie<br>civil)         | Minime                   | Faible       | Sensibilité aux<br>bulles d'air et<br>aux vagues | Oui                                 | Important<br>(plusieurs<br>dispositifs<br>requis) | Satisfaisantes<br>(importante<br>pour les<br>faibles h) |

<u>Légende</u> Avantage de la technologie

Inconvénient de la technologie


### **DEBITMETRIE**

Introduction

La mesure & limites

Mise en place et analyse

Conclusion



### **TECHNOLOGIES EXISTANTES**

La mesure & limites

Introduction

Mise en place et analyse

**Conclusion** 

<u>Légende:</u>

|           | V - Courantométrie                            | h – Limnimétrie                                                     |  |  |
|-----------|-----------------------------------------------|---------------------------------------------------------------------|--|--|
| En charge | ✓ Electromagnétique                           | ✓ Pression •Bulle à bulle • Piézo                                   |  |  |
| A surface |                                               | <ul><li>✓ Pression</li><li>•Bulle à bulle</li><li>• Piézo</li></ul> |  |  |
| libre     | <ul><li>✓ A corrélation<br/>d'échos</li></ul> | ✓ Ultrasons<br>✓ Radar                                              |  |  |

— Sans contact avec le flux

— Intrusif

### **NIVEAUMETRIE** (PAR PRESSION)

1/4

Introduction

La mesure & limites

Mise en place et analyse

Conclusion

 $ightharpoonup P(Pa) = \frac{F(N)}{S(m^2)}$ 

- ✓ Technique indirecte
  - o Bulle-à-bulle

#### Principe physique

- Q<sub>air</sub> de 1 à 2 bulles/s envoyé par compresseur dans un tube immergé (φ qq mm) pour compenser la pression de la colonne d'eau.
- 2. Mesure de cette pression par une autre technique

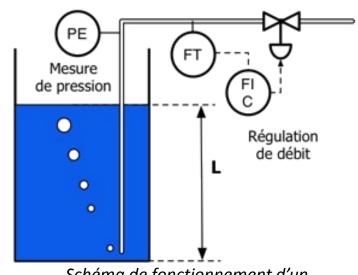



Schéma de fonctionnement d'un capteur bulle à bulle



Temps de réaction important Pb pour fortes vitesses

### **NIVEAUMETRIE** (PAR PRESSION)

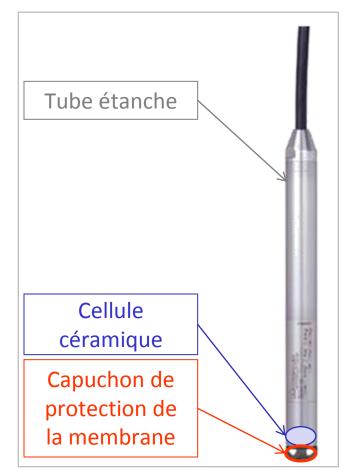
2/4

Introduction

La mesure & limites

Mise en place et analyse

**Conclusion** 


#### Pression

- ✓ Technique directe
  - → Sonde piézométrique

#### **Principe physique**

Corrélation entre déformation de la membrane et la hauteur d'eau qui le surplombe.

=> Déformation mécanique = signal électrique par l'intermédiaire d'un transducteur de pression



Sonde de niveau Waterpilot FMX21(Endress-Hauser) Introduction

La mesure & limites

Mise en place et analyse

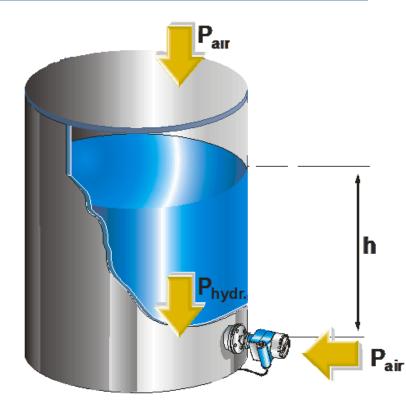
Conclusion

#### > Pression hydrostatique

= pression exercée par une hauteur de fluide

#### Théorème de Pascal

P = 
$$\rho \cdot g \cdot h$$
  $\Rightarrow$  h =  $\frac{P}{\rho \cdot g}$ 


Hauteur du liquide [m]

Constante gravitationnelle

= 9,8 m/s²

Densité du liquide [kg/m³]

Pression hydrostatique [Pa]

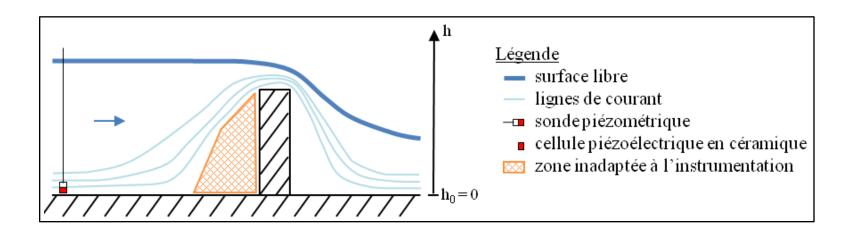


### **NIVEAUMETRIE** (PAR PRESSION)

4/4

Introduction

La mesure & limites


Mise en place et analyse

Conclusion

#### Avantages / Inconvénients



- + Mesure possible pendant une mise en charge
- Intrusif sensibilité au dépôt (donc aux vitesses faibles) entretien régulier
- Information peu fiable si V importante ou courbure forte des lignes de courant
- Sensibilité à son environnement (T, ...) risque de dérive
- Installation du capteur à soigner
- Incertitudes sur site: 0.5 1 cm



### **TECHNOLOGIES EXISTANTES**

La mesure & limites

Introduction

Mise en place et analyse

Conclusion

<u>Légende:</u>

|           | V - Courantométrie                                                                     | h – Limnimétrie                   |
|-----------|----------------------------------------------------------------------------------------|-----------------------------------|
| En charge | ✓ Electromagnétique                                                                    | ✓ Pression •Bulle à bulle • Piézo |
| A surface | <ul><li>✓ Temps de transit</li><li>✓ Doppler continu</li><li>✓ Doppler pulsé</li></ul> | ✓ Pression •Bulle à bulle • Piézo |
| libre     | libre  ✓ A corrélation  d'échos                                                        | ✓ Ultrasons<br>✓ Radar            |

— Sans contact avec le flux

Instrumentation des réseaux – Journée ARSATESE Loire-Bretagne 2/12/2015

— Intrusif

### **NIVEAUMETRIE** (PAR ULTRASON)

1/2

Introduction

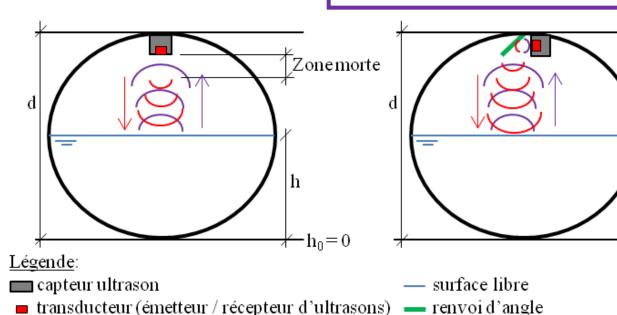
La mesure & limites

Mise en place et analyse

**Conclusion** 

#### Ondes ultrasonores

$$h = d - \frac{(c_{air} \cdot t)}{2}$$


ondes ultrason émises

#### Principe physique : Corrélation entre :

- la différence de temps t entre l'émission et réception d'ondes ultrasonores,
- et la distance entre récepteur et la cote de la surface libre.

andes réfléchies, et reçues par le capteur

h



### **NIVEAUMETRIE** (PAR ULTRASON)

2/2

Introduction

La mesure & limites

Mise en place et analyse

Conclusion

#### Avantages / Inconvénients



- + Mesure non intrusive maintenance réduite
- Mesure impossible en cas de mise en charge
- Mesure impossible en présence de mousses
- Sensibilité aux forts gradients de température, d'humidité de l'air risque de dérive
- Attention à la stabilité de l'information sur l'ensemble de la zone de mesure
- Attention à éviter d'être trop proche des murs pour la mise en place du capteur
- Incertitudes sur site: 1 cm







Sonde de niveau ultrason i-Series | P-Series (NIVUS)



### **TECHNOLOGIES EXISTANTES**

La mesure & limites

Introduction

Mise en place et analyse

Conclusion

<u>Légende:</u>

|                    | V - Courantométrie                                                                                                                   | h – Limnimétrie                                                                                                                   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| En charge          | ✓ Electromagnétique                                                                                                                  | ✓ Pression •Bulle à bulle • Piézo                                                                                                 |
| A surface<br>libre | <ul> <li>✓ Temps de transit</li> <li>✓ Doppler continu</li> <li>✓ Doppler pulsé</li> <li>✓ A corrélation</li> <li>d'échos</li> </ul> | <ul> <li>✓ Pression         <ul> <li>•Bulle à bulle</li> <li>• Piézo</li> </ul> </li> <li>✓ Ultrasons</li> <li>✓ Radar</li> </ul> |

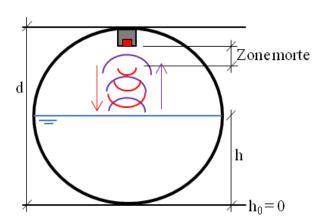
— Sans contact avec le flux

— Intrusif

### **NIVEAUMETRIE** (PAR RADAR)

1/2

Introduction


La mesure & limites

Mise en place et analyse

Conclusion

#### > Ondes électromagnétiques

$$h = d - \frac{(c_{radar} \cdot t)}{2} = d - \frac{(\lambda \cdot f_0 \cdot t)}{2}$$



#### **Principe physique**

Même principe que les ultrasons mais avec des ondes électromagnétiques => Indépendance par rapport au milieu de propagation (T°, ...)

### **NIVEAUMETRIE** (PAR RADAR)

2/2

Introduction

La mesure & limites

Mise en place et analyse

**Conclusion** 

#### > Avantages / Inconvénients



- + Mesure non intrusive 

  maintenance réduite
- + Insensibilité à la température et à l'environnement du capteur
- Mesure impossible en cas de mise en charge
- Attention à l'étalonnage du capteur et sa permittivité diélectrique
- Attention à la stabilité de l'information sur l'ensemble de la zone de mesure
- Attention à éviter d'être trop proche des murs pour la mise en place du capteur
- Incertitudes sur site: 1 cm



Introduction

La mesure & limites

> Mise en place et analyse

Conclusion

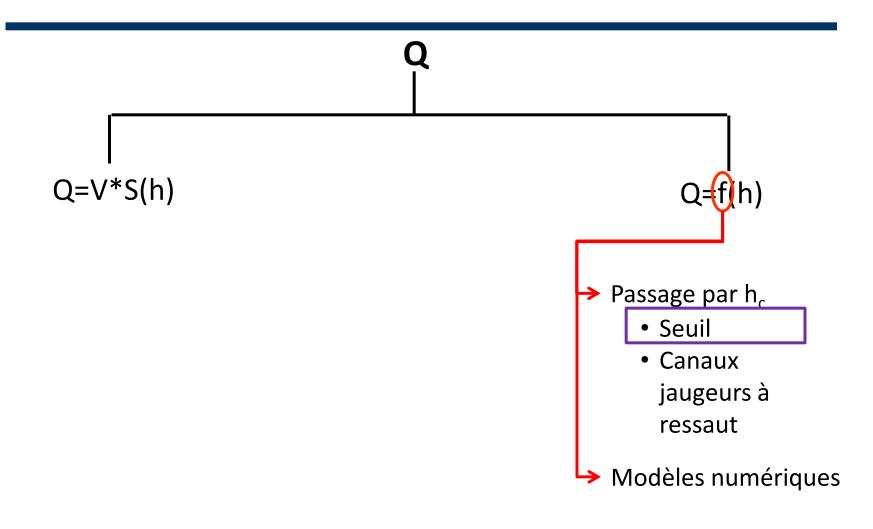
### **NIVEAUMETRIE**

#### Comparaison des technologies de mesure de hauteur

|           |                                                  | Caractéristiques                                        |                                                        |                                 |                                  |                                                                                                   |                                                  | Incertitudes                  |                       |
|-----------|--------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------|-----------------------|
|           | Principe de<br>mesure                            | Précision<br>intrinsèque                                | Facilité<br>d'installation                             | Entretien<br>requis             | Sujétion aux<br>dérives          | Sensibilité à<br>l'environnement                                                                  | Fonctionneme<br>nt en charge                     | Coût<br>d'investis-<br>sement | associées sur<br>site |
| INTRUSIVE | Mesure de<br>pression                            | Très bonne<br>(0.1 à 0.5 %<br>de la plage<br>de mesure) | Etalonnage<br>facile mais<br>installation à<br>soigner | Régulier<br>(≈1 fois /<br>mois) | Importante                       | Moyenne (sensible<br>aux dépôts mais<br>pas aux mousses)                                          | Possible                                         | Faible                        | 0.5 - 1 cm            |
| HORS EAU  | Mesure<br>acoustique:<br>ondes<br>ultrasons      | Bonne<br>(1 % de la<br>plage de<br>mesure)              | Installation<br>facile Faible<br>(≈ 2 fois /<br>an)    | (≈ 2 fois /                     | Dépendante<br>du<br>constructeur | Importante<br>(mousses, flottants,<br>vaguelettes,<br>gradients de<br>température<br>importants,) | Impossible=><br>zone morte<br>sous le<br>capteur | Moyen                         | ≥1 cm                 |
|           | Mesure<br>électro-<br>magnétique:<br>ondes radar | Bonne (1 % de la plage de mesure)                       |                                                        | Faible                          | Faible                           | Impossible=><br>zone morte<br>sous le<br>capteur                                                  | Élevé                                            | ≥1 cm                         |                       |

<u>Légende</u> Avantage de la technologie

Inconvénient de la technologie


### **DEBITMETRIE**

Introduction

La mesure & limites

Mise en place et analyse

**Conclusion** 



### **DEBITMETRIE** (PASSAGE PAR H<sub>C</sub>)

1/7

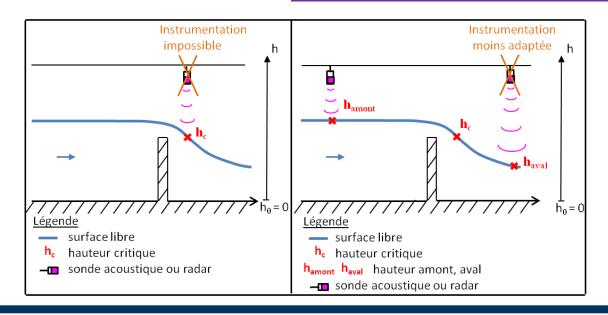
Introduction

La mesure & limites

Mise en place et analyse

Conclusion

Intérêt du passage par h<sub>c</sub>


$$Fr = 1 \Rightarrow \overline{U}(x) = c(x)$$

$$\Rightarrow Q(x) = S(h_c) \cdot c(h_c)$$

#### Principe physique:

Passage par h<sub>c</sub> entraîne une relation bi-univoque entre:

- la hauteur mesurée en ce point,
- Le débit qui y transite



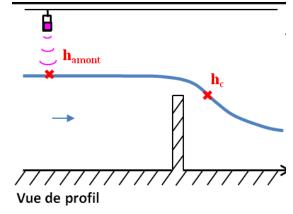
### **DEBITMETRIE** (PASSAGE PAR H<sub>c</sub>)

2/7

Introduction

La mesure & limites

Mise en place et analyse


Conclusion

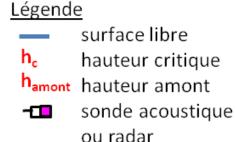

Dispositifs pré-étalonnés permettant le passage par h<sub>c</sub>





Photo d'un seuil triangulaire



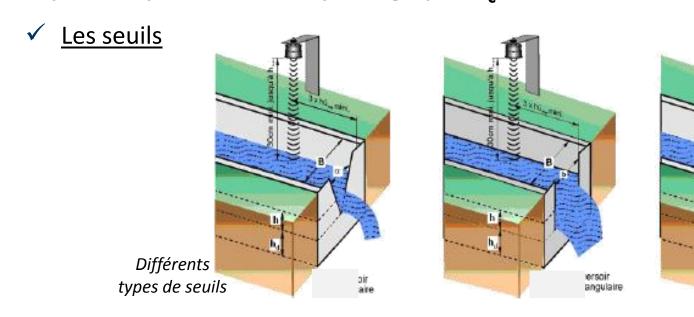




Intrusif => Risque de dépôt à l'amont Fonctionne en influence aval

### **DEBITMETRIE** (PASSAGE PAR H<sub>C</sub>)

3/7


Introduction

La mesure & limites

Mise en place et analyse

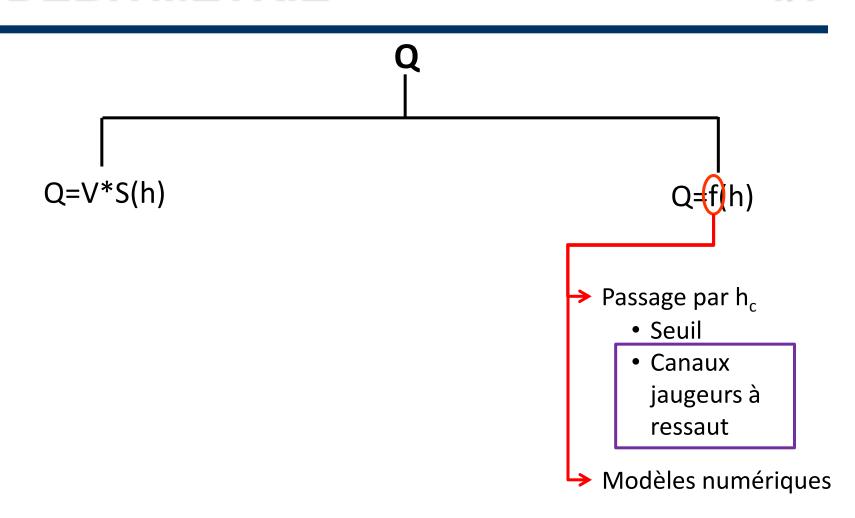
Conclusion

Dispositifs permettant le passage par h<sub>c</sub>



| Seuil rectangulaire | $Q_{dev} = \mu \cdot B \cdot h^{3/2} \cdot \sqrt{2g}$                                                    | (cf CETMEF 2005) |
|---------------------|----------------------------------------------------------------------------------------------------------|------------------|
| Seuil triangulaire  | $Q_{dev} = \frac{8}{15} \cdot \mu \cdot \tan\left(\frac{\alpha}{2}\right) \cdot h^{5/2} \cdot \sqrt{2g}$ |                  |
| Seuil trapézoïdal   | $Q_{dev} = 1.32 \cdot h^{2.47} \cdot \tan(\alpha) + 1.69 \cdot L^{1.02} \cdot h^{1.47}$                  |                  |

### **DEBITMETRIE**


4/7

Introduction

La mesure & limites

Mise en place et analyse

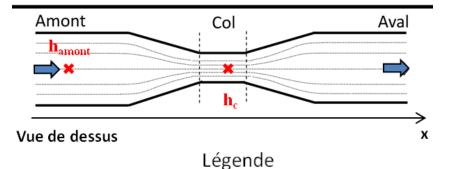
**Conclusion** 



### **DEBITMETRIE** (PASSAGE PAR H<sub>c</sub>)

5/7

Introduction


La mesure & limites

Mise en place et analyse

Conclusion

Dispositifs permettant le passage par h<sub>c</sub>

- ✓ Les seuils
- ✓ Les canaux jaugeurs



#### **Principe physique:** Objectif:

Créer un ressaut hydraulique (fluvial => torrentiel) dans un canal + ou – long présentant une diminution locale de la section.

# surface libre h<sub>c</sub> hauteur critique h<sub>amont</sub> hauteur amont sonde acoustique ou radar

# **DEBITMETRIE** (PASSAGE PAR H<sub>C</sub>)

6/7

Introduction

La mesure & limites

Mise en place et analyse

Conclusion

Dispositifs permettant le passage par h<sub>c</sub>

- ✓ Les seuils
- Les canaux jaugeurs



Risque de dépôt réduit Ne fonctionne pas en influence aval



Canal Venturi à Saint-Malo (entrée de la rivière canalisée)



Ex de canal Venturi à l'aval d'une STEU

# **DEBITMETRIE** (PASSAGE PAR H<sub>c</sub>)



Introduction

La mesure & limites

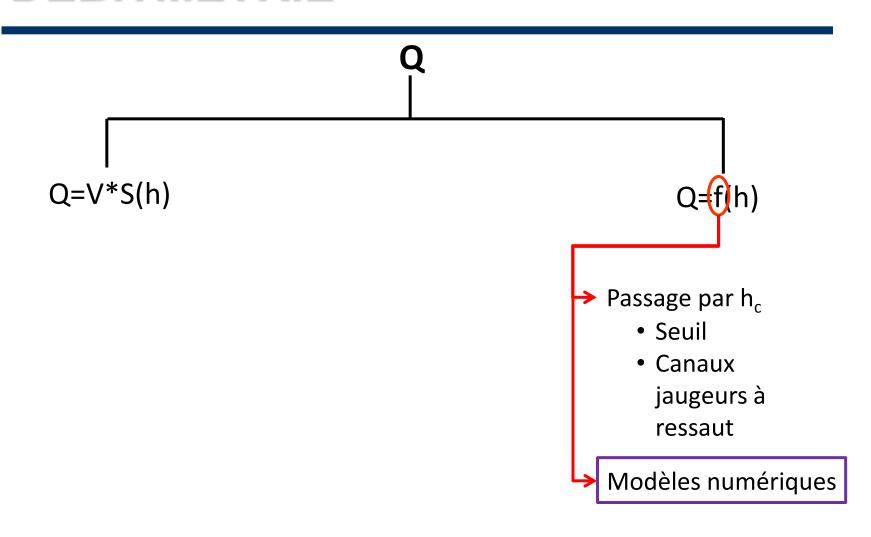
Mise en place et analyse

Conclusion

### Avantages / Inconvénients



- + Méthode de mesure fiable et précise (≈ 5 %)
- Attention : conditions hydrauliques non perturbées à l'amont
- Attention: dispositif à associer à une mesure de h (piézo, US, radar,...)
- Attention au choix du point de mesure (éviter le risque de débordement)
- -Dispositif nécessitant du génie civil


## **DEBITMETRIE**

Introduction

La mesure & limites

Mise en place et analyse

Conclusion



# **MODELE NUMERIQUE?**

1/9

Introduction

La mesure & limites

Mise en place et analyse

Conclusion

| Modèles mécanistes                                              |                                                                               |            |               |  |  |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------|------------|---------------|--|--|
| 0D                                                              | 1D                                                                            | 2D         | 3D            |  |  |
| <ul><li>Lois de seuils</li><li>Manning-<br/>Strickler</li></ul> | <ul> <li>Courbe de remous</li> <li>Barré de Saint-<br/>Venant (1D)</li> </ul> | • BSV (2D) | Navier-Stokes |  |  |

Précision des résultats

Facilité d'utilisation

Temps de calcul et puissance requise

Hypothèses simplificatrices

La mesure & limites

Mise en place et analyse

Conclusion

Manning-Strickler

$$Q = K_S \cdot \sqrt{I} \cdot (R_h(h))^{2/3} \cdot S(h)$$

Paramètres:

 $Q = d\acute{e}bit (m^3/s)$ 

 $K_s = \text{coef de Strickler}(m^{1/3}/s)$ 

S = surface mouillée (m²)

R<sub>h</sub> = rayon hydraulique (m)

I = pente (m/m)



Ecoulement uniforme et permanent sans influence aval Evaluation des paramètres hydrauliques difficile pour des conduites à géométrie particulière

La mesure & limites

Mise en place et analyse

**Conclusion** 

Courbe de remous

$$\frac{dh}{dx} = \frac{I - J}{(1 - Fr^2)} = \frac{I \cdot J(Q(h))}{\left(\frac{Q}{S(h)}\right)^2}$$

$$1 - \frac{g \cdot D_h(h)}{g \cdot D_h(h)}$$

#### Paramètres:

 $Q = d\acute{e}bit (m^3/s)$ 

h = hauteur d'eau (m)

S = surface mouillée (m²)

 $D_h = diamètre hydraulique (m)$ 

I = pente (m/m)

J = pente énergétique (m/m)

Légende:

Données géométriques





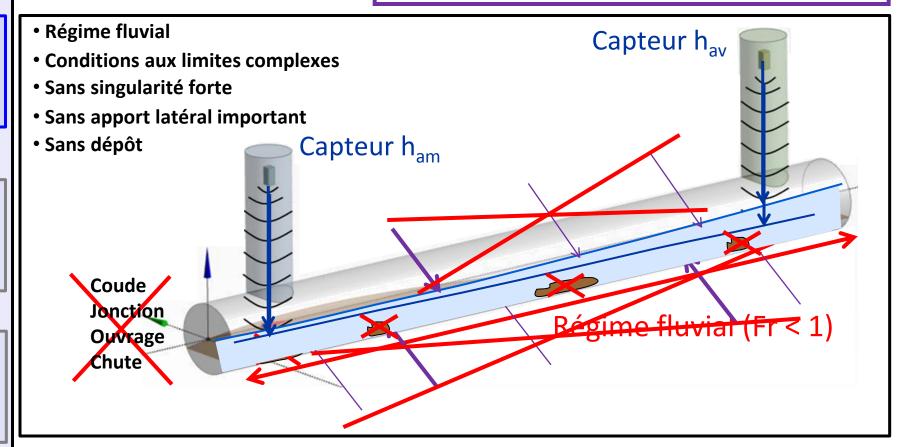
Paramètre évalué (avec Colebrook ou MS ex:  $J = \frac{Q^2}{K^2 \cdot S^2 \cdot R^{4/}}$  + Calibration rapide



Variable recherchée



**Ecoulement quasi-permanent** 


Courbe de remous

<u>Principe</u>: Mesurer h dans deux sections transversales afin d'intégrer l'influence aval

La mesure & limites

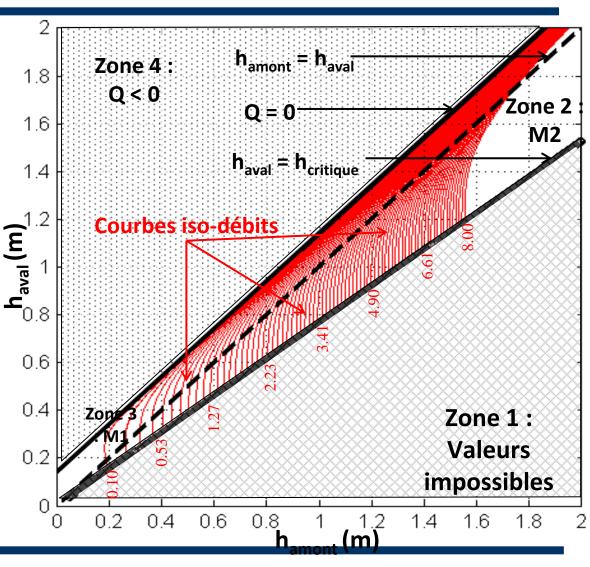
Mise en place et analyse

Conclusion



La mesure & limites

Mise en place et analyse


Conclusion

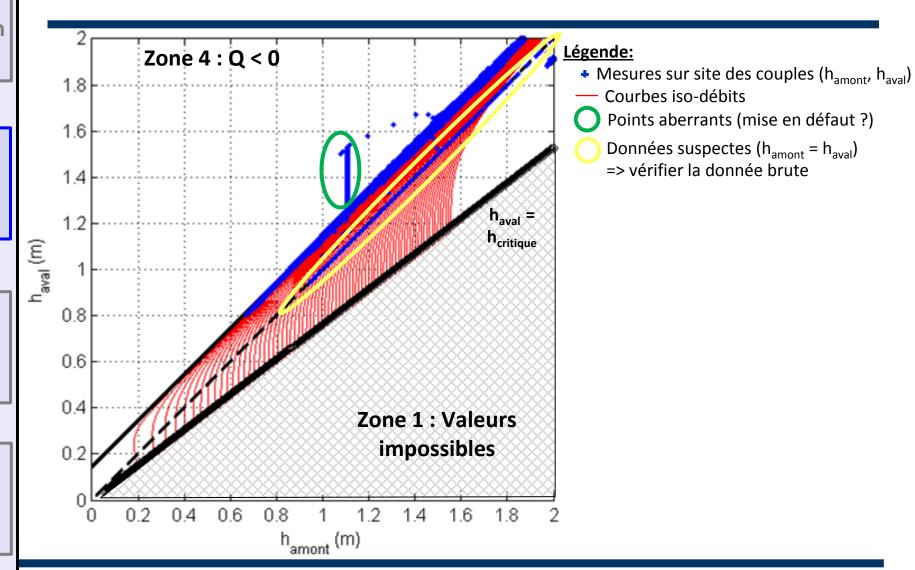
→abaque spécifique au site permet :

D'identifier Q à partir de h<sub>aval</sub> et h<sub>amont</sub>

Analyser des données : Qualification hydraulique des données => 4 zones associées à des comportements hydrauliques différents

> Filtrer les données (points aberrants)




# MODÈLE 1D: CR

Introduction

La mesure & limites

Mise en place et analyse

Conclusion



La mesure & limites

> Mise en place et analyse

Conclusion

**Barré de Saint-Venant** 

$$\frac{dS}{dt} + \frac{dQ}{dx} = 0$$

$$\frac{dQ}{dt} + \frac{d}{dx} \left(\frac{Q^2}{S}\right) + g \cdot S \cdot \frac{dh}{dx} = g \cdot S \cdot (I - J)$$

Valable en non permanent Attention aux hyp simplificatrices pour la résolution de BSV dans les logiciels commerciaux



Logiciel Canoë - BSV

# **MODÈLE 3D: NAVIER-STOKES**

6/9

Introduction

La mesure & limites

Mise en place et analyse

Conclusion

Ouvrages complexes : ex Déversoir d'orage non-standard



La mesure & limites

Mise en place et analyse

Conclusion

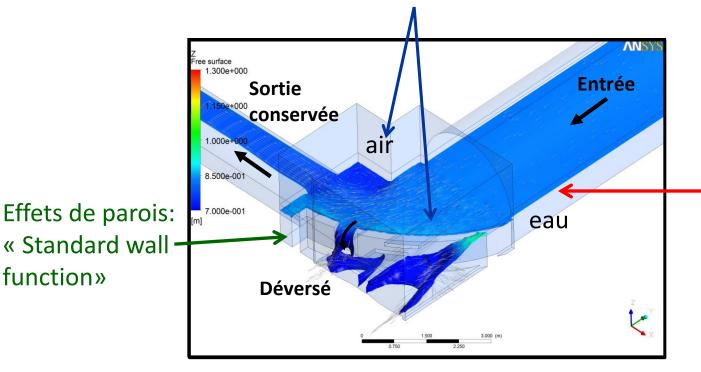
Méthodologie d'instrumentation des DO complexes avec la CFD **Conditions aux limites Conditions aux limites** Déversoirs géométriques **hydrauliques** d'orage **Contraintes de** Modèle 3D i mesures de mise en place hauteur d'eau **CFD** h  $Q = f(h_i)$ 

# **MODÈLE 3D: NAVIER-STOKES**

Introduction

La mesure & limites

> Mise en place et analyse


Conclusion

function»

Résultat du modèle 3D

Equations de Navier-Stokes moyennées (RANS)

+ modèle de turbulence k-epsilon



Modèle "Volume Of Fluid " (VoF) + schéma "modified HRIC"

# **DEBITMETRIE** (Q=F(H))

Introduction

La mesure & limites

Mise en place et analyse

Conclusion

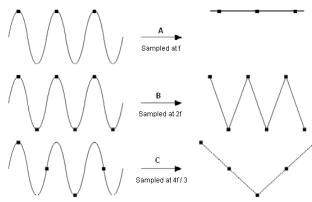
### Avantages / Inconvénients



- + Méthode de mesure fiable et précise
- + Intègre une meilleure connaissance hydraulique dans l'instrumentation
- Attention : au choix du modèle selon les caractéristiques de l'écoulement, conditions aux limites,...
- Dispositif indirect : mesure de h et modèle associé
- -- Prise en main du modèle parfois compliquée

La mesure & limites

Mise en place et analyse


**Conclusion** 

## **CONTRAINTES DE MISE EN PLACE**

- > Plage de mesure / valeurs maximales sur site
  - Ex: vitesse pour un Doppler pulsé | profilomètre
    - Limité en vitesse max mesurable à hauteur donnée

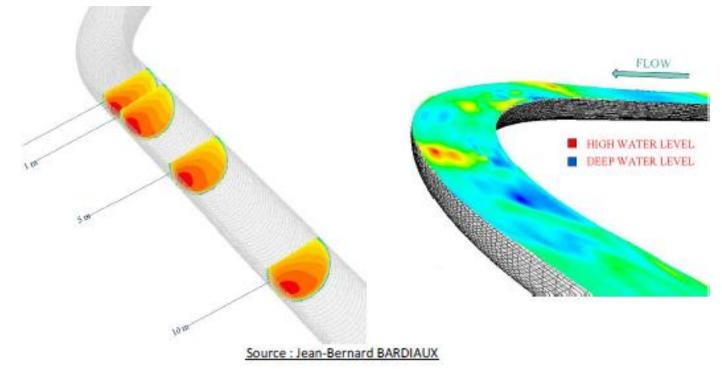
=>Limite de Nyquist

$$VH < \frac{c^2}{8f_0} \tan(\beta)$$



Ex fréquences d'échantillonnage inadaptées (cste, limite de Nyquist et repliement)

→ Conditionne la <u>fréquence d'échantillonnage</u> (> 2\* composante fréquentielle (d'intérêt) la plus élevée du signal mesurée)


La mesure & limites

Mise en place et analyse

Conclusion

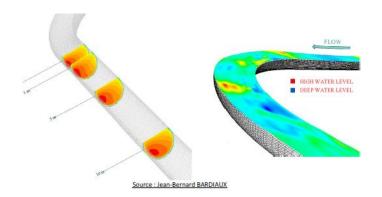
## **CONTRAINTES DE MISE EN PLACE**

- Singularités sur site
  - Influence d'un coude



#### **Préconisations:**

→ En écoulement chargé: dépend du Reynolds. Classiquement : 5-10 DN (ISO 9104)


La mesure & limites

Mise en place et analyse

Conclusion

## **CONTRAINTES DE MISE EN PLACE**

- Singularités sur site
  - > Influence d'un coude

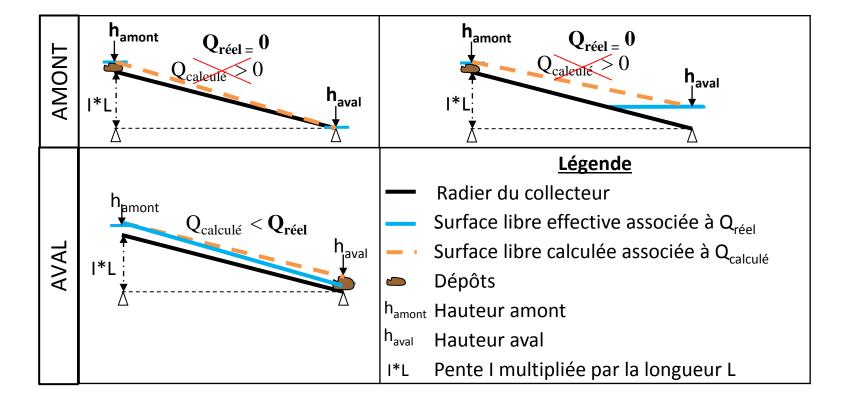


Préconisations: A surface libre

|                         | 1 faisceau                                          |               | Multi faisceaux                                   |               |
|-------------------------|-----------------------------------------------------|---------------|---------------------------------------------------|---------------|
|                         | Longueur amont                                      | Longueur Aval | Longueur amont                                    | Longueur Aval |
| Coude 90°               | 20×B                                                | 5×B           | 5 à 7×B                                           | 3×B           |
| Coude 45°               | 15×B                                                | 3×B           | 5 à 7×B                                           | 3×B           |
| Vanne                   | 12 à 20×B (selon la charge en<br>amont de la vanne) | 5×B           | 5 à 7×B (selon la charge en<br>amont de la vanne) | 5×B           |
| Pompe                   | 10 à 15 B (selon débit de pompe)                    | 3×B           | 5 à 7×B (selon débit de<br>pompe)                 | 3×B           |
| Réduction de<br>section | 10×B                                                | 3×B           | 5×B                                               | 3×B           |
| Confluence en T         | 15×B                                                | 5×B           | 5×B                                               | 5×B           |
| Ressaut<br>hydraulique  | 10×B                                                | 5×B           | 10×B                                              | 5×B           |
| Seuil                   | 15×B                                                | -             | 10×B                                              | -             |

Source: NIVUS GmbH

La mesure & limites


Mise en place et analyse

Conclusion

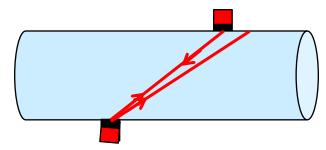
## **CONTRAINTES DE MISE EN PLACE**

### Singularités sur site

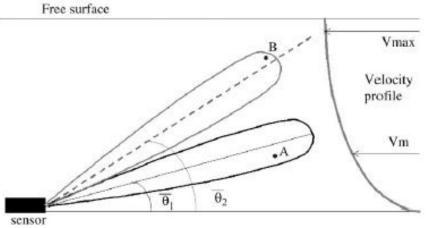
Influence du dépôt - exemple niveaumétrie



La mesure & limites


Mise en place et analyse

Conclusion


## **CONTRAINTES DE MISE EN PLACE**

#### Installation

Influence de l'angle de pose (pour les ultrasons)



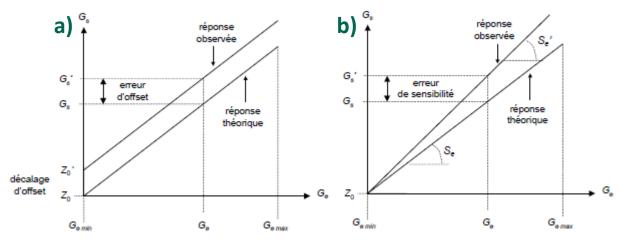
Influence de l'angle d'émission pour un temps de transit



Influence de l'angle d'émission pour un Doppler continu ou pulsé

→ Doppler pulsé (angle de tir élevé) : sensible aux composantes verticales de vitesse et donc à l'angle d'installation

La mesure & limites


Mise en place et analyse

Conclusion

## **CONTRAINTES DE MISE EN PLACE**

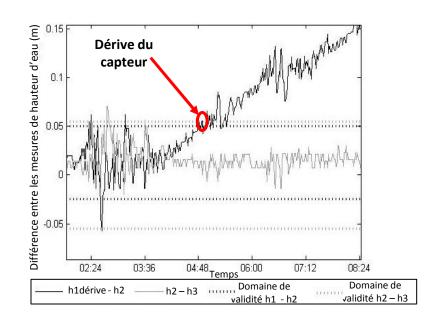
### Installation – Etalonnage du capteur

- Vérifier que l'appareil de mesure fonctionne et ne présente ni d'erreur d'offset (zéro), ni de sensibilité
- Procéder au réglage de l'appareil pour corriger les éventuelles erreurs systématiques => établir une courbe / relation d'étalonnage



Ex: erreur d'offset (a) et de sensibilité (b) (cf. JLBK 2000)

La mesure & limites


Mise en place et analyse

**Conclusion** 

## **ANALYSE DES DONNEES & VALIDATION**

### Dérive de capteur

- Répétabilité du temps sec
- ✓ Intérêt de la sécurisation de la mesure | redondance
- ✓ Etalonnage régulier



### Perte de données

- Reconstruction par répétabilité des données ?
- ✓ Valeur précédent le dysfonctionnement sur toute la période manquante
- ✓ NaN | 0 partout

La mesure & limites

Mise en place et analyse

**Conclusion** 

### CONCLUSION

- > Choix de la technologie et installation = compromis entre
  - ✓ Etendue de mesure,
  - ✓ Contraintes de site,
  - ✓ Incertitude,
  - ✓ Coût,
  - ✓ Fiabilité,
  - ✓ Maintenance.